Сложение и вычитание обыкновенных дробей. Приведение дробей к одному знаменателю. Понятие о НОК

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

др24

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

др25

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

др28

Дроби. Вычитание дробей.

Для нахождения разницы 2х дробей с одинаковыми знаменателями, необходимо вычесть из числителя 1й дроби числитель 2й дроби, а знаменатель обоих дробей оставить не изменяя. Вычитание обыкновенных дробей:

Дроби. Вычитание дробей.

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь, которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

Дроби. Вычитание дробей.

,

Дроби. Вычитание дробей.

,

Дроби. Вычитание дробей.

Дроби. Сложение дробей.

Чтоб сложить 2 дроби с одинаковыми знаменателями, необходимо сложить их числители, а знаменатели оставить без изменений. Сложение дробей , примеры :

Общая формула для сложения обыкновенных дробей и вычитания дробей с одинаковыми знаменателями:

Обратите внимание! Проверьте нельзя ли сократить дробь, которую вы получили, записывая ответ.

Сложение дробей.

Разные действия с дробями можно выполнять, например, сложение дробей. Сложение дробей можно разделить на несколько видов. В каждом виде сложения дробей свои правила и алгоритм действий. Рассмотрим подробно каждый вид сложения.

Сложение дробей с разными знаменателями – алгоритмы и примеры решения

Сложение дробей с разными знаменателями

Под дробью в математике принято понимать число, включающее в себя одну или несколько равных долей. Фактически это какая-то количественная часть от определённого числового или буквенного выражения. Существует два тип записи дробей: классически вид — a/b и десятичный — 0,345. В обыкновенном виде чёрточка обозначает деление. Число, стоящее над ней или с левой стороны, называется числителем, а внизу или справа от неё знаменателем. Первое является делимым, а второе делителем.

Ещё в Древнем Вавилоне и Греции философы и учёные начали отличать части от целых значений. Надписи дробных выражений встречаются и в папирусах Древнего Египта. Египтяне умели делить и умножать дроби, но складывать их не могли. Вавилоняне использовали шестидесятеричные дроби, у которых в знаменателе могли стоять числа 60, 600, 602 и так далее. Такая запись была частным случаем и не могла описывать выделение других частей.

Итальянский математик Симон Стевин

Поэтому итальянский математик Симон Стевин предложил использовать десятичную запись. То есть изображать дробь так, чтобы в его знаменателе стояла единица с последующими нулями. Своё изображение дробей использовали и в Индии. Их особенностью было расположение знаменателя сверху. Современную же запись предложили арабы, она оказалась настолько удачной, что её используют и до сих пор.

Существует три вида дробей:

  1. Обыкновенная (правильная). Это выражение, в котором рациональное число записывается как отношение двух чисел. Например, a / c.
  2. Смешанная. Представляет собой неправильное выражение, которое можно записать в виде целого и правильной дроби. То есть этот тип можно представить как сумму натурального числа с правильной дробью. Например, 5 ¾ = 5 + ¾.
  3. Десятичная. Имеет такую форму записи, при которой пишется сначала целая часть, а затем, через разделитель, дробная. В качестве разделителя используется точка или запятая. Иначе говоря, десятичная дробь — это выражение со знаменателем равным 10 n , где n — натуральное число. Например, 2,43 = 2 + 4/10 + 3/10.

Кроме этого, существует понятие правильной дроби — это выражение, в котором числитель меньше знаменателя, и неправильной — в ней знаменатель меньше числителя или равный ему. При этом любую неправильную дробь можно преобразовать в сумму натурального числа с правильным выражением.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Правило действий

По сути, дробь — это вид записи числа. Причём одно и то же число может быть записано по-разному. Например, четыре можно представить как 4/1, 8/2, 4,0. Основное правило, использующееся при сложении дробей с разными числителями и знаменателями, заключается в том, что, если верхнюю и нижнюю часть умножить или разделить на одно и то же число, количественный результат не изменится. Это легко проверить, выполнив простые алгебраические вычисления.

Дробь — это вид записи числа.

Пусть имеется дробь 3/6. Для того чтобы переписать выражение в десятичный вид, нужно тройку разделить на шесть. В итоге получится ответ: ноль целых пять десятых. Записать его можно как 0,5. Теперь, чтобы проверить утверждение, нужно умножить числитель и знаменатель на одно и то же число. Пусть это будет двойка. Таким образом, выражение примет вид: 3 * 2 / 6 * 2 = 6/12. После деления шести на двенадцать ответ не изменится. Он будет равен 0,5.

Аналогично можно проверить и операцию деления. При этом если верхнюю и левую часть можно разделить на одно и то же число, то выполнение такого действия называют сокращением. А когда числитель и знаменатель не имеют общего делимого (числа, на которое можно сократить), то дробь называют несократимой.

С дробями можно выполнять любые действия: прибавлять, вычитать, перемножать, делить, возводить в степень, извлекать корень. Для всех этих действий существуют строгие правила. Прибавление и вычитание относят к элементарным операциям. Для выполнения этих действий не нужно знать сложные формулы и теоремы. Следует лишь запомнить простое правило: для того чтобы сложить дроби с разными знаменателями, нужно привести их к общему делителю, а после просто выполнить складывание числителей без изменения нижней дробной части.

Хотя с первого взгляда это правило кажется замысловатым, на самом деле оно очень простое и доступное любому для понимания. Чтобы его усвоить и разобраться, следует знать алгоритм действий и принцип нахождения общего знаменателя. Он основан на главном свойстве дроби.

Сложение дроби и натурального числа

Для начала важно знать, как прибавлять к натуральному числу дробь.

Например, задача состоит в том, чтобы прибавить к числу 5 дробь (mathbf>).

В этом случае результатом сложения будет по сути приписывание к натуральному числу дробной части, то есть (mathbf>)

Отдельно стоит отметить, что если дробь больше единицы, то есть неправильная, то после прибавления надо выделить целую часть.

Для этого надо поделить нацело числитель на знаменатель, частное прибавить к целой части, а остаток записать в дробную часть.

Рассмотрим такой пример:

Для начала просто приписываем дробную часть:

4 при делении на 3 дает частное 1 и остаток, тоже равный 1.

Тогда по описанному алгоритму новая целая часть будет равна 7, а дробная (mathbf>):

Пройти тест и получить оценку можно после входа или регистрации

Вычитание правильной дроби из целого числа.

Правила вычитания дробей – правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби – выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

Дроби. Вычитание дробей.

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Как плюсовать дроби

Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.

Свойства сложения

  • От перестановки мест слагаемых сумма не меняется: a + b = b + a.
  • Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа: (a + b) + c = a + (b + c).
  • Если к числу прибавить ноль, получится само число: a + 0 = 0 + a = a
  • При сложении числа можно переставлять и объединять в группы, результат от этого не изменится.

Давайте рассмотрим несколько вариантов сложения обыкновенных дробей.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

др22

Алгоритм решения

Решить пример или задачу — найти количественный ответ или привести его к простому виду. Поэтому применяют различные способы преобразования заданной дроби к простой записи. Складывать, впрочем, как и вычитать, две и более дроби между собой можно лишь при условии приведения их к общему знаменателю. Под ним понимают такое число, которое является кратным к любому знаменателю в складываемых выражениях. Чтобы найти наименьшее общее число, нужно подобрать значение, на которое любой из знаменателей будет делиться без остатка.

Вычислить его можно двумя способами: найти наибольший общий делитель или использовать каноническое разложение на простые множители. Например, для цифр 12 и 20 он будет равный 60. Для нахождения методом разложения нужно 12 представить в виде произведения 2*2*3, а 20 как 2*2*5. Затем объединить их без повторения и выполнить действие: 2*2*3*5 = 60.

Решить пример или задачу

Другой вариант выполняется методом перебора. Сначала проверяют делимость без остатка 20 на 12. Так как действие невыполнимо, 20 умножают на два и снова проверяют. Действие снова невозможно. Теперь 20 умножают на три. Деление без остатка допустимо, таким образом, искомое число будет равно 20*3 = 60. Какой метод применять, зависит от предпочтения считающего и принципиального значения не имеет.

После того как обоюдный знаменатель определён, нужно это значение разделить на каждый делитель, а полученное число записать как соответствующий дополнительный множитель числителя. Далее, на каждое делимое умножить свой коэффициент и плюсовать полученные результаты.

Таким образом, алгоритм сложения неправильных дробей с разными знаменателями, впрочем, как и правильных, можно представить в следующем виде:

Алгоритм сложения неправильных дробей

  1. Посчитать общий знаменатель.
  2. Найти дополнительные множители для каждого числителя.
  3. Умножить найденный коэффициент на соответствующий ему числитель.
  4. Прописать в знаменателе общий множитель, а в числителе сумму произведений, полученных после умножения на делимое.
  5. Прибавить произведения в числителе.
  6. Записать полученную дробь и при возможности её упростить.

Этот подход применим к любой дроби, даже содержащей буквенные или неопределённые значения. Следует отметить, что при выполнении действий над смешанными отношениями целые части будут складываться отдельно от дробных членов. Если же после сложения получится неправильная дробь, то нужно выделить целую часть и при необходимости прибавить её к имеющейся. Тогда решение будет считаться правильным.

Сложение дробей с одинаковыми знаменателями

Чтобы получить сумму двух дробей с равными знаменателями, нужно сложить числители исходных дробей, а знаменатель оставить прежним.

Не забудьте проверить, можно ли сократить дробь.

4 Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

др29

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

Примеры заданий

Понять принцип сложения дробей,

Понять принцип сложения дробей, проще всего выполнив несколько практических заданий. Начинать нужно с простых, постепенно переходя к более сложным.

Например, нужно сложить два выражения 2/3 и 4/5. Это простое задание, обычно предлагающееся на школьных уроках. Для того чтобы его выполнить, необходимо воспользоваться алгоритмом решения. Первое что нужно, это найти общий множитель. Пять на три без остатка не делится, десять тоже, а вот число 15 подойдёт. Теперь нужно вычислить дополнительный коэффициент. Для этого первый и второй знаменатели делят на 15. Таким образом, получится: 2 / 3 + 4 / 5 = (2 * 5 + 4 * 3) / 15 = (10 + 12) / 15 = 22/15. В ответе получилась неправильная дробь, поэтому её нужно переписать, выделив целую часть. В итоге решением будет: 2 / 3 + 4 / 5 = 1 7/15.

Более сложные задания обычно включают в себя несколько членов, при этом выражения в них могут быть любыми. Пусть нужно найти решение математической задачи следующего вида: 5/12 — 7/18 + 2/36 + 3 5/6 + 7/4. В этом примере содержится неправильная дробь и смешанная. Согласно правилу, неправильное выражение нужно привести к нормальному виду: 7/4 = (1 * 4 +3) / 4 = 1 * 4 / 4 + (3 / 4) = 1 + ¾ = 1 ¾.

Подставив найденное выражение вместо неправильной дроби, пример примет вид: 5/12 — 7/18 + 2/36 + 3 5/6 + 1 ¾. Самым большим числом в знаменателе является тридцать шесть, оно же будет и общим знаменателем. Каждый знаменатель нужно разделить на 36. Полученное число добавить как коэффициент в числитель, а целые части сложить отдельно: 1 (5 * 3 — 7 * 2 + 5 * 6 + 9 * 3) / 36 = 1 (15 — 14 + 30 + 27) / 36 = 1 (58 / 36). Для того чтобы правильно записать ответ, полученное значение нужно преобразовать в смешанное выражение: 1 (58 / 36) = (1 * 36 + 58) / 36 = 94 / 26 = (94 / 2) / (36 / 2) = 47 / 18 = 2 11/18.

То есть при решении обычным способом важно привести дроби к упрощённому виду, найти общий знаменатель и при необходимости преобразовать выражение к смешанной дроби.

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители; все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Дроби. Вычитание дробей.

5 Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

др30

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Использование онлайн-калькулятора

Использование онлайн-калькулятора

В реальных расчётах довольно часто приходится сталкиваться с формулами, содержащими большое количество членов. Чтобы самостоятельно в таких случаях найти общий знаменатель при сложении дробей, понадобится затратить много времени. При этом и в самих расчётах легко можно допустить ошибку. Поэтому совсем не зазорно будет воспользоваться специальными онлайн-калькуляторами.

Это обыкновенные сайты, на страницах которых находятся формы для расчёта выражений любой сложности. Всё что требуется от пользователя — вести исходные данные и нажать кнопку «Рассчитать». Система буквально за несколько секунд автоматически выполнит вычисления, за правильность которых можно не переживать. Что примечательно, кроме итогового результата, пользователю будет доступна вся цепочка решения. Это даёт возможность, даже не зная правил, наглядно увидеть, как нужно находить сумму дробей.

Из всего множества сайтов можно выделить следующие три:

Planetcalc. Калькулятор

  1. Planetcalc. Калькулятор выполняет различные математические действия с любыми дробями: сложение, вычитание, умножение, деление, упрощение. Чтобы онлайн-калькулятор правильно распознал сложные выражения, их части нужно включать в скобки. Количество членов можно добавлять до бесконечности. С ключевыми моментами расчёта можно ознакомиться ниже строчки с ответом.
  2. Onlinemschool. Используя этот онлайн-калькулятор, пользователь без труда сможет сложить, вычесть, умножить, разделить или возвести в степень любые дроби.
  3. Справочный портал «Калькулятор». Это своего рода комбайн, позволяющий не только быстро выполнить любые действия над дробями, но и предоставляющий детальное объяснение решения.

Воспользовавшись любым из этих онлайн-калькуляторов, не придётся скрупулёзно и монотонно искать ответ на поставленную задачу. Она будет решаться автоматически. Всё что будет нужно, так это переписать ответ и при желании изучить алгоритм вычисления.

Как устроена десятичная дробь

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

  • 0,3
  • 4,23
  • 9,939

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Сложение смешанного и натурального числа

Здесь все делается аналогично: разбиваем смешанное число на целочисленную часть и дробную.

Целую часть складываем с натуральным числом.

К полученному результату прибавляем дробную часть от смешанного числа.

Пройти тест и получить оценку можно после входа или регистрации

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Дроби. Вычитание дробей.

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Дроби. Вычитание дробей.

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Дроби. Вычитание дробей.

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Дроби. Вычитание дробей.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 < 14. Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

Дроби. Вычитание дробей.

Складываем неправильную дробь 18/18, которую мы получили и дробную часть уменьшаемого и получаем:

Дроби. Вычитание дробей.

Итог – общая схема вычислений:

  • Если есть целая часть, переводиме эти дроби в неправильные;
  • Приводим все дроби к общему знаменателю любым способом;
  • Вычитаем найденные числа по правилу вычитания дробей с одинаковыми знаменателями;
  • Если есть возможность, сокращаем полученную дробь. Если дробь получилась неправильной, выделяем целую часть.
  • Запомните, что выделяем целую часть предпочтительно в конце выполнения задания, именно перед записью ответа. Так легче не запутаться.

Общий вариант. Вычитание дробных выражений.

Предположим, есть такое задание:

Приводим к общему знаменателю. При помощи умножения. Поэтому мы не можем в первой дроби в знаменателе к иксу прибавить единицу. Зато можно перемножить знаменатели.

Скобки не открываем! Для того, чтобы в первой дроби получился знаменатель х(х+1), необходимо числитель и знаменатель домножить на (х+1). А во второй дроби – на х. Результат:

Обратите внимание! У нас появились скобки! Здесь нужно быть очень внимательным. Скобки появляются из-за того, что умножается весь числитель и весь знаменатель.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Действия с десятичными дробями и смешанными числами

В реальной жизни часто приходиться работать с десятичными дробями (цены в магазинах, измерение массы, расстояний).

Соответственно, бывают и случаи, когда нужно оперировать одновременно смешанными числами и десятичными дробями (вычесть из двух третей имеющихся денег стоимость товара и посмотреть что останется).

Давайте узнаем, как это делается.

Заметим, что десятичные дроби легко представимы в виде смешанных чисел со знаменателем дробной части, равным 1, с количеством нулей равным количеству знаков после запятой.

Для действий между десятичными дробями и смешанными числами мы будем переводить десятичную дробь в смешанное число и пользоваться алгоритмами, рассмотренными выше.

Пройти тест и получить оценку можно после входа или регистрации

Интересная информация

Одной из первой книг, которая учила работать с дробными и смешанными числами, был трактат «Liber abaci» Леонардо Пизанского (также известного как Фибоначчи), изданный в 1202 г.

Отец юного Леонардо служил таможенником в Африке и взял своего сына с собой, чтобы тот учился считать.

Надо отметить, что тогда в Европе применялась римская система счисления, а в Африке знакомая нам десятичная. Она так понравилась ученому, что тот решил узнать как можно больше о ней в разных странах: Египте, Сирии, Греции, Сицилии.

Леонардо

После своего путешествия Леонардо убедился в совершенности этой системы, собрав достаточно знаний.

Добавив свои личные исследования, Фибоначчи приступил к написанию книги, которая во многом опередила свое время и значительно способствовала углублению познаний в математической науке.

Книга была не просто еще одной работой философа для других философов, она была прикладным пособием для купцов, продавцов, счетоводов, государственных служащих и так далее.

В трактате описанные задачи оказались настолько актуальными, что их или их аналоги можно было встретить в «Сумме арифметики» Пачиоли (1494), и в «Приятных и занимательных задачах» Баше де Мизириака (1612), и в «Арифметике» Магницкого (1703), и даже в«Алгебре» Эйлера (1768).

Умножение и деление дробей

Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:

Умножение дробей

Не забываем про сокращение. Это может облегчить вычисления.

Сокращение дробей

Чтобы умножить два смешанных числа, надо:

  1. преобразовать смешанные дроби в неправильные;
  2. перемножить числители и знаменатели дробей;
  3. сократить полученную дробь;
  4. если получилась неправильная дробь, преобразовать в смешанную.

Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:

  • числитель первой умножить на знаменатель второй, результат произведения записать в числитель новой дроби;
  • знаменатель первой умножить на числитель второй, результат произведения записать в знаменатель новой дроби.

Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.

Числа, произведение которых равно 1, называют взаимно обратными.

Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.

Для деления смешанных чисел необходимо:

  • представить числа в виде неправильных дробей;
  • разделить то, что получилось друг на друга. Результат
Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий