Сравнительная таблица твердости. Перевод твердости по БРИНЕЛЛЮ, РОКВЕЛЛУ, ВИККЕРСУ и ШОРУ.
Механические свойства алюминия, как и других материалов – это свойства, которые связаны с упругой и неупругой реакцией материала на приложение к нему нагрузки, в том числе, зависимость между напряжениями и деформациями. Примерами механических свойств являются:
- модуль упругости (при растяжении, при сжатии, при сдвиге)
- предел прочности (при растяжении, при сжатии, при сдвиге)
- предел текучести
- предел усталости
- удлинение (относительное) при разрыве
- твердость.
Механические свойства часто ошибочно относят к физическими свойствам.
Механические свойства материалов, в том числе, алюминия и его сплавов, которые получают путем испытания материала на растяжение, например, модуль упругости при растяжении, прочность при растяжении, предел текучести при растяжении и относительное удлинение называют механическими свойствами при растяжении.
Таблица №1 Для перевода чисел твердости и временного сопротивления разрыву
(для увеличения масштаба — нажмите на таблицу, изображение откроется в отдельном окне)
Скачать таблицу в pdf: Таблица №1 Для перевода чисел твердости и временного сопротивления разрыву.
Перевод чисел твердости и временного сопротивления разрыву σв пригодится специалистам, связанным с термообработкой сталей, цветных металлов и сплавов. Также они могут быть полезны при проведении исследований околошовной сварочной зоны – вы можете проследить, как меняется твердость по мере удаления от шва, на основании чего можно сделать вывод о механических свойствах шва, так как значения твердости можно перевести в σв. В табл. №1 значение σв заканчивается на 690 Нмм2 (70 кгсмм2), что соответствует 21 НRC – редкий сварочный шов имеет такую твердость, разве что после закалки в некоторых случаях она может быть более 21 НRC при условии, что металл имеет достаточное количество углерода, легирующих элементов и структура металла после термообработки – мартенсит. После сварки шов и околошовная зона находится в отпущенном состоянии, если основной металл был предварительно закален. В таком случае его можно исследовать по шкале HRA (cм. табл. №2) или по методу Бринелля.
Твердость по Бринеллю. Особенности и суть метода
Метод первопроходец. Звание заслуживает система определения твердости материалов, разработанная Августом Бринеллем. Это инженер из Швеции. Его метод стал первым стандартизированным и широко используемым. Шкалу Бринелля мир «взял на вооружение» в 1900-ом году. Разберемся, в чем суть системы, твердость каких материалов можно узнать с ее помощью, и есть ли у метода минусы.
Формулы расчета твердости по различным методам
Для определения твердости образцов существуют различные методы, такие как статический и динамический (ударный) и ультразвуковой.
Динамические и ультразвуковые методы не требуют определения твердости вручную. Твердость отображается на экране.
Для методов по Бринеллю, Виккерсу и Микро-Виккерсу существуют эмпирические таблицы и формулы для расчета твердости.
Для метода по Роквеллу существует формула для измерения глубины отпечатка.
По методу Шора измеряется глубина вдавливания индентора в поверхность исследуемого образца под действием тарированной пружины.
Как измеряют твердость методом Бринелля?
Измерение твердости по Бринеллю происходит путем внедрения с определенной нагрузкой закаленного стального шарика (диаметром 2,5 мм; 5 мм или 10 мм) в поверхность испытуемого образца. В результате на поверхности образца получается отпечаток. С помощью лупы измеряют диаметр отпечатка.
Измерение твердости по Бринеллю происходит путем внедрения с определенной нагрузкой закаленного стального шарика (диаметром 2,5 мм; 5 мм или 10 мм) в поверхность испытуемого образца. В результате на поверхности образца получается отпечаток. С помощью лупы измеряют диаметр отпечатка.
Формула твердости по Бринеллю.
Формула расчета твердости методом Бринелля (HB, HBW):
- где НВ – при использовании стального шарика для металлов с твердостью менее 450 единиц; (HBW – при использовании шарика из твердого сплава с твердостью более 450 единиц), кгс;
- F – нагрузка, действующего на индентор, Н (кгс);
- А – площадь поверхности отпечатка, мм 2 ;
- D – диаметр стального шарика, мм;
- d – диаметр отпечатка, мм.
Нагрузку на шарик выбирают в зависимости от вида материала К и должна быть пропорциональна квадрату диаметра шарика:
Соответствующую нагрузку F и диаметр шарика D выбирают таким образом, чтобы диаметр отпечатка находился в пределах:
Толщина образца должна, как минимум в 8 раз превышала глубину внедрения индентора.
Как измеряют твердость методом Роквелла?
Измерение твердости по Роквеллу основан на погружение алмазного наконечника (120 градусов) или стального закаленного шарика (диаметром 1,588 мм) с последующим измерением глубины отпечатка.
Формула твердости по Роквеллу
Формула расчета твердости по Роквеллу (HR):
- при измерении твердости алмазным наконечником (120 градусов) применяют формулу:
где H-h-разность глубин внедрения индентора (в мм) после снятия основной нагрузки и до ее приложения.
- при измерении твердости закаленным стальным шаровым индентором (диаметром 1,588 мм):
Как измеряют твердость методом Виккерса?
Измерение твердости по Виккерсу происходит путем плавного внедрения четырехгранной алмазной пирамиды (с противоположным углом 136 градусов) в исследуемую поверхность образца, с дальнейшим измерением диагонали отпечатка d и расчета твердости исследуемого образца по таблицам (подробнее в ГОСТ 2999-75).
Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору
Указанные значения твердости по Роквеллу, Виккерсу и Шору соответствуют значениям твердости по Бринеллю, определенным с помощью шарика диаметром 10 мм.
По Роквеллу | По Бринеллю | По Виккерсу (HV) | По Шору | |||
HRC | HRA | HRB | Диаметр отпечатка | HB | ||
65 | 84,5 | – | 2,34 | 688 | 940 | 96 |
64 | 83,5 | – | 2,37 | 670 | 912 | 94 |
63 | 83 | – | 2,39 | 659 | 867 | 93 |
62 | 82,5 | – | 2,42 | 643 | 846 | 92 |
61 | 82 | – | 2,45 | 627 | 818 | 91 |
60 | 81,5 | – | 2,47 | 616 | – | – |
59 | 81 | – | 2,5 | 601 | 756 | 86 |
58 | 80,5 | – | 2,54 | 582 | 704 | 83 |
57 | 80 | – | 2,56 | 573 | 693 | – |
56 | 79 | – | 2,6 | 555 | 653 | 79,5 |
55 | 79 | – | 2,61 | 551 | 644 | – |
54 | 78,5 | – | 2,65 | 534 | 618 | 76,5 |
53 | 78 | – | 2,68 | 522 | 594 | – |
52 | 77,5 | – | 2,71 | 510 | 578 | – |
51 | 76 | – | 2,75 | 495 | 56 | 71 |
50 | 76 | – | 2,76 | 492 | 549 | – |
49 | 76 | – | 2,81 | 474 | 528 | – |
48 | 75 | – | 2,85 | 461 | 509 | 65,5 |
47 | 74 | – | 2,9 | 444 | 484 | 63,5 |
46 | 73,5 | – | 2,93 | 435 | 469 | – |
45 | 73 | – | 2,95 | 429 | 461 | 61,5 |
44 | 73 | – | 3 | 415 | 442 | 59,5 |
42 | 72 | – | 3,06 | 398 | 419 | – |
40 | 71 | – | 3,14 | 378 | 395 | 54 |
38 | 69 | – | 3,24 | 354 | 366 | 50 |
36 | 68 | – | 3,34 | 333 | 342 | – |
34 | 67 | – | 3,44 | 313 | 319 | 44 |
32 | 67 | – | 3,52 | 298 | 302 | – |
30 | 66 | – | 3,6 | 285 | 288 | 40,5 |
28 | 65 | – | 3,7 | 269 | 271 | 38,5 |
26 | 64 | – | 3,8 | 255 | 256 | 36,5 |
24 | 63 | 100 | 3,9 | 241 | 242 | 34,5 |
22 | 62 | 98 | 4 | 229 | 229 | 32,5 |
20 | 61 | 97 | 4,1 | 217 | 217 | 31 |
18 | 60 | 95 | 4,2 | 207 | 206 | 29,5 |
– | 59 | 93 | 4,26 | 200 | 199 | – |
– | 58 | – | 4,34 | 193 | 192 | 27,5 |
– | 57 | 91 | 4,4 | 187 | 186 | 27 |
– | 56 | 89 | 4,48 | 180 | 179 | 25 |
Читать также: Разновидности розеток и выключателей
Отверстия под резьбу
Таблица сверл для отверстий под нарезание трубной цилиндрической резьбы.
Размеры гаек под ключ
Основные размеры под ключ для шестигранных головок болтов и шестигранных гаек.
G и M коды
Примеры, описание и расшифровка Ж и М кодов для создания управляющих программ на фрезерных и токарных станках с ЧПУ.
Типы резьб
Типы и характеристики метрической, трубной, упорной, трапецеидальной и круглой резьбы.
Масштабы чертежей
Стандартные масштабы изображений деталей на машиностроительных и строительных чертежах.
Режимы резания
Онлайн калькулятор для расчета режимов резания при точении.
Отверстия под резьбу
Таблица сверл и отверстий для нарезания метрической резьбы c крупным (основным) шагом.
Станки с ЧПУ
Классификация станков с ЧПУ, станки с ЧПУ по металлу для точения, фрезерования, сверления, расточки, нарезания резьбы, развёртывания, зенкерования.
Режимы резания
Онлайн калькулятор для расчета режимов резания при фрезеровании.
Форматы чертежей
Таблица размеров сторон основных и дополнительных форматов листов чертежей.
CAD/CAM/CAE системы
Системы автоматизированного проектирования САПР, 3D программы для проектирования, моделирования и создания 3d моделей.
Чтение чертежей
Техническое черчение, правила выполнения чертежей деталей и сборочных чертежей.
Существует довольно большое количество различных механических характеристик металла, которые учитываются при производстве различных деталей. Многие из них зависят от химического состава материала, другие от особенностей эксплуатации. Измерение твердости металла проводится чаще других испытаний, так как это качество во многом определяет особенности эксплуатации материала. Рассмотрим особенности определения твердости подробнее.
Модуль упругости
Модуль упругости, который часто называют модулем Юнга – это отношение напряжения, которое приложено к материалу, к соответствующей деформации в том интервале, когда они являются прямо пропорциональными друг к другу.
Различают три типа напряжений и соответственно три типа модулей упругости для любого материала, в том числе для алюминия:
- модуль упругости при растяжении
- модуль упругости при сжатии
- модуль упругости при сдвиге (сдвиговый модуль упругости).
Таблица – Модули упругости при растяжении алюминия и других металлов [1]
Зачем нужны таблицы твердости?
Однако вернемся к поставленному вопросу: зачем нужны таблицы твердости?
Если отвечать кратко, они незаменимы, если используются различные методы измерения твердости. Понять о чем идет речь можно на конкретных примерах.
Пример: как измерить твердость волнистой пружины из стали 65Г
Вам нужно измерить твердость волнистой пружины из стали 65Г, но она очень тонкая, менее 0.5 мм толщиной и ее нельзя проверять на обычном аппарате Роквелла при нагрузке 150 кгс или 60 кгс, так как она продавится. Тем не менее, конечные значения нужно получить в HRC. Выйти из положения можно, если использовать аппарат Супер-Роквелл, например, на нагрузке 15 кгс (HR15N), в таком случае вы получите корректные значения твердости, которые сможете перевести в требуемые единицы с помощью таблицы.
Пример: как определить твердость бериллиевой бронзы БрБ2
Или следующий пример. Нужно определить твердость бериллиевой бронзы БрБ2, после дисперсионного старения она должна быть не менее 320 HV (по Виккерсу). Вы также можете «уколоть» ее на аппарате Супер-Роквелл, а потом полученные значения, например, в HR15N перевести в HV.
Определение твердости по Бринеллю – о цифрах и буквах
Результаты исследований выражаются в буквенно-цифровой записи. Из букв в ней присутствуют либо HB, либо HBW. Первое обозначение актуально для стального шарика. Вторая запись указывает на то, что вдавливали сферу из карбида вольфрама. К буквам добавляют 2 или 3 числа. Первое – показатель твердости. Максимально возможный по Бринеллю – 650. Такой показатель измеряется карбидным индентором. Стальной вдавливается в материалы твердостью до 450-ти единиц.
Второе число в записи – диаметр шарика-наконечника. Он не указывается лишь в том случае, если максимальный, то есть равен 10-ти миллиметрам. Третье число в обозначении – сила, с которой давили на испытуемый образец. Рассмотрим такой перевод твердости по Бринеллю: 500 HBW 5/800. Запись HBW свидетельствует о применение карбидного шарика. Его диаметр составил 5 миллиметров.
Сила давления была равна 800-от килограммов силы (кгс). 500- итоговая твердость материала. Вычисляется она по формуле отношения приложенного усилия к площади отпечатка. Интересно, что со значениями шкалы Бринелля совпадает еще одна – Виккерса. Обе начинаются со 100 единиц. Правда наивысшая твердость по Виккерсу и Бринеллю разнится.
У Виккерса значения доходят до 1 200-от. Записи результатов отличаются лишь буквами. Шкала Виккерса обозначается HV. Стоит учитывать это, выбирая товары с указанием твердости. То, что по Бринеллю тверже стали, по Виккерсу – материал весьма податливый.
Кстати, согласно большинству словарей, твердость – это свойства пластичности, упругости и сопротивления деформациям, или иным разрушениям, при вдавливании в верхний слой испытуемого образца другого, более твердого вещества. Ну, вот, уточнили о чем речь. Пора разобраться, какая твердость и для каких материалов считается приемлемой.
Предел текучести
Напряжение, которое необходимо для достижения заданной малой пластической деформации в алюминии или другом материале при одноосной растягивающей или сжимающей нагрузке.
Если пластическая деформация под воздействием растягивающей нагрузки задается как 0,2 %, то применяется термин «предел текучести 0,2 %» (Rp0,2).
Рисунок 4 – Типичная диаграмма напряжение-деформация для алюминиевых сплавов
Твердость по Бринеллю – таблица значений
Твердость стали по Бринеллю может быть от 103-ти до 200-от единиц. Показатель зависит от марки. Не стоит забывать, что существует мягкая, нержавеющая и закаленная сталь. Сплав Ст0, к примеру, занимает нижнюю планку твердости. СТ2пс – марка со 116-ю HB. У СТ3пс показатель равен 131. 170 HB отличают сталь СТ5Гпс и СТ5пс. 200 единиц у марок ВСт6сп, СТ6пс и СТ6сп.
Твердость металлов по Бринеллю, в том числе и их сплавов, к коим причисляется сталь, важна при эксплуатации многих предметов. Пример – подшипники. Они подвергаются трению. Будь сплав для подшипников мягким, машина не отходит и гарантийного срока. Сопротивляемость деталей износу, зависящая от твердости, важна и при конструировании космических аппаратов, летной техники, строительных конструкций.
Твердость стали по Брюнеллю для арматуры высотных зданий, к примеру, должна быть не ниже 150-ти единиц. Если брать усредненные цифры для металлов, то черные, как правило, маркируются числом 140 HB, а твердость цветных не превышает 130-ти. Драгоценные металлы одни из самых податливых.
Так, твердость платины по Бринеллю – всего 50. Выше говорилось, что шкала начинается со 100. Однако, современные технологи нередко дополняют ее, доводя до единицы. Твердость некоторых цветных металлов щелочноземельной группы составляет всего 30 HB.
Если вопрос не о строительстве и конструировании машин, а о ремонте, людей больше интересуют показатели древесины. Ее твердость тоже иногда измеряют по Бринеллю. Для сплавов металлов есть ГОСТы. Массы изначально «замешивают» в соответствии с техническими требованиями. Для древесины условия иные. Твердость зависит не только от породы, но и от условий произрастания.
Липа из разных местностей может отличаться на 10-20 баллов, как и сосна, дуб, ольха. Поэтому, лучше смотреть не из чего сделаны стол, или паркет, а какая твердость указана в документах к ним.
Для паркета берется древесина, как минимум, средней твердости. Если отбросить, погрешность на условия произрастания, точно подойдут блоки из белой акации, самшита, железной березы, граба и кизила.
Твердость этих пород приближенна к 100 HB. Это на торцах. Радиальный и тангенциальный показатели неизбежно ниже процентов на 30. Древесину по Бринеллю мерят в странах Европы. Россия к ним примыкает. Продукция из США соответствует шкале Янка. Этот тест узконаправлен, применим только к дереву.
В Америке прилагаемую к материалу силу записывают не в килограммах, а в фунтах. Диаметр металлического шарика выражен в дюймах, составляет 0,444. В миллиметрах это около 11-ти.
Итоговый результат измерений не бывает ниже 660 единиц. Высший показатель – 4 500. Таким «хвастается» гваяковое дерево. Оно одно из самых дорогих, поскольку из-за твердости сложно обрабатывается, к тому же, редко встречается.
В общем, число 4 500, даже на товарах из Штатов, встретишь редко. А вот значения Бринелля проставлены на большинстве продукции, изготавливаемой в России, и завозимой из-за рубежа. Это шкала, в премудростях которой стоит разобраться.
Способы перехода между шкалами
Тот факт, что в лабораториях используются разные методы, а также то, что нет одного стандарта, то приходится конвертировать один показатель в другую систему счисления. Следует отметить, что во всех странах преимущественно выбирают одну технологию. Но из-за активного товарооборота изготовители встречаются с непривычными маркировками. Итак, дадим таблицу с аналогичными результатами по отличающимся данным:
Диаметр от вдавливания – в мм | По Бринеллю | По Роквеллу, категория А | В | С | По Виккерсу |
3,9 | 241 | 62,8 | 99,8 | 24 | 242 |
4,08 | 217 | 60,7 | 96,6 | 20,2 | 217 |
4,2 | 206 | 59,6 | 94,6 | 17,9 | 206 |
5 | 144 | 49,9 | 77,7 | – | 144 |
Можно отметить, что списки не обладают особо высокой точностью, поскольку в зависимости от измерений могли быть использованы разнообразные сплавы. Сводки будут верны только в том случае, если при всех пяти способах был апробирован одинаковый материал.
Типичные значения твёрдости для различных материалов [ править | править код ]
Материал | Твёрдость |
Мягкое дерево, например сосна | 1,6 HBS 10/100 |
Твёрдое дерево | от 2,6 до 7,0 HBS 10/100 |
Полиэтилен низкого давления | 4,5 – 5,8 HB [1] |
Полистирол | 15 HB [1] |
Алюминий | 15 HB |
Медь | 35 HB |
Дюраль | 70 HB |
Мягкая сталь | 120 HB |
Нержавеющая сталь | 250 HB |
Стекло | 500 HB |
Инструментальная сталь | 650—700 HB |
Удлинение (при разрыве)
Часто называется «относительным удлинением». Увеличение расстояния между двумя метками на испытательном образце, которое возникает в результате деформирования образца при растяжении до разрыва между этими метками.
Величина удлинения зависит от размеров поперечного сечения образца. Например, величина удлинения, которая получена при испытании алюминиевого листового образца будет ниже для тонкого листа, чем для толстого листа. Тоже самое относится и к прессованным алюминиевым профилям.
Рисунок 5 – Влияние легирующих элементов на прочностные свойства и относительное удлинение [4]
Удлинение А
Удлинение в процентах после разрыва образца при исходном расстоянии между метками 5,65 · √ S0, где S0 – исходная площадь поперечного сечения испытательного образца. Устаревшее обозначение этой величины А5 в настоящее время не применяется. Аналогичная величина в русскоязычных документах обозначается δ5.
Легко проверить, что для круглых образцов это расстояние между исходными метками вычисляется как 5·d.
Удлинение А50мм
Удлинение в процентах после разрыва образца по отношению к исходной длине между метками 50 мм и постоянной исходной ширине испытательного образца (обычно 12,5 мм). В США применяется расстояние между метками в 2 дюйма, то есть 50,8 мм.
Измерение твердости по Виккерсу
Также выделяют метод измерения твердости по Виккерсу, который регламентирован ГОСТ 2999. Получил он распространение при определении твердости деталей и заготовок, который имеют небольшую толщину. Кроме этого, он может применяться для измерения твердости деталей, имеющих поверхностный твердый слой.
К особенностям этого способа тестирования образца можно отнести нижеприведенные моменты:
- Применяется так называемый алмазный наконечник, который имеет форму пирамиды с четырьмя гранями и равными сторонами.
- Выбирается определенное время выдержки.
- После того, как снимается нагрузка, проводится измерение размеров диагоналей получившегося отпечатка и вычисляется среднее арифметическое значение.
- Величина прилагаемой нагрузки регламентирована, может выбираться в зависимости от типа тестируемого материала.
- Полученные результаты в ходе проведения исследований обозначаются HV.
Читать также: Графит в ковких чугунах имеет
В некоторых случаях после полученного значения указывается время выдержки и величина прилагаемой нагрузки, что позволяет с большей точностью определить значение твердости.
Таблица соответствия HB — HRC
Таблица соответствия H B – HRC (Перевод значений твёрдости)
(соотношение твёрдости по Бриннелю твёрдости по Роквеллу, определяемых методами в соответствии с ГОСТ 8.064-79)
Твёрдость — это сопротивление тела внедрению индентора — другого твёрдого тела. Способы испытания твёрдости подразделяются на статические и динамические.
К статическим относятся способы измерения твёрдости по Бринеллю, Викерсу, Роквеллу, Кнупу; к динамическим — способы измерения твёрдости по Шору, Шварцу, Бауману, Польди, Морину, Граве.
Измерения твёрдости осуществляют при 20±10°С.
Измерение твёрдости по Бринеллю
Бринелля метод
Бринелля метод [по имени шведского инженера Ю.А.Бринелля (J.A.Brinell)] — способ определения твёрдости материалов вдавливанием в испытываемую поверхность стального закалённого шарика диаметром 2,5; 5 и 10 мм пр нагрузке P от 625 H до 30 кН. Число твёрдости по Бринеллю HB — отношение нагрузки (кгс) к площади (мм 2 ) поверхности отпечатка. Для получения сопоставимых результатов относительной твёрдости материалы (HB свыше 130) испытывают при отношении P:D 2 =30, материалы средней твёрдости (HB 30-130) — при P:D 2 =10, мягкие (HB 2 =2,5. Испытания по методу Бринелля проводят на стационарных твердомерах — прессах Бринелля, обеспечивающих плавное приложение заданной нагрузки к шарику и постоянство её при выдержке в течение установленного времени (обычно 30 секунд).
Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012-59 «Металлы. Метод измерения твердости по Бринеллю«: Стандарт устанавливает метод измерения твердости по Бринеллю металлов с твердостью не более 650 единиц. Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием усилия, приложенного перпендикулярно к поверхности образца, в течение определенного времени, и измерении диаметра отпечатка после снятия усилия. ГОСТ 9012-59, в частности, определяет требования, предъявляемые к отбору образцов металла для измерения твёрдости по Бринеллю — размер образцов, шероховатость поверхности и др.
Измерение твёрдости по Роквеллу
Применение камня
Используется показатель твердости алмаза и в промышленности. Не все камни, которые обнаруживают в трубках на месторождениях, пригодны для ювелирной обработки. Большинство материала имеет слишком много дефектов. Такие минералы отправляются на потребности промышленности, где алмаз используется в качестве абразива. Аппаратура, которая имеет покрытие алмазной крошкой, работает дольше и качественнее. Алмаз используется в таких приборах и инструментах, как:
- оборудование в медицине (скальпели, хирургические инструменты);
- сверла, фрезы, шлифовальные круги, стеклорезы, ножницы и пилы по металлу, буровые установки;
- в телекоммуникациях и электронике алмаз используют для прохождения сигналов разных частот по одному кабелю;
- защитный элемент в химической и физической промышленности;
- космическая отрасль, где используются даже лонсдейлиты, которые прочнее алмаза.
Алмаз — вещество, которое имеет уникальные свойства. В том числе и твердость минерала дает возможность использовать его в разных сферах. Применение камня актуально, и его стоимость продолжает расти. А искусственные вещества, которые крепче алмаза, пока недоступны для широкого использования.
Сдвиговая прочность
Максимальное удельное напряжение, то есть максимальная нагрузка, разделенная на исходную площадь поперечного сечения, которую выдерживает материал при испытании на сдвиг. Сдвиговая прочность обычно составляет около 60 % от прочности при растяжении.
Сдвиговая прочность является важной характеристикой качества заклепок, в том числе, алюминиевых.
Рисунок 6 – Прочность на сжатие, прочность на сдвиг, несущая прочность и твердость различных алюминиевых сплавов [4]
Числа твердости HRC для некоторых деталей и инструментов
Детали и инструменты | Число твердости HRC |
Головки откидных болтов, гайки шестигранные, рукоятки зажимные | 33. 38 |
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона | 35. 40 |
Шлицы круглых гаек | 36. 42 |
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам | 40. 45 |
Пружинные и стопорные кольца, клинья натяжные | 45. 50 |
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги | 50. 60 |
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса | 56. 60 |
Рабочие поверхности калибров – пробок и скоб | 56. 64 |
Копиры, ролики копирные | 58. 63 |
Втулки кондукторные, втулки вращающиеся для расточных борштанг | 60. 64 |
Твердость
Сопротивление металла пластическому деформации, обычно измеряемое путем отпечатка.
Твердость Бринелля (HB)
Сопротивление проникновению сферического индентора при стандартизированных условиях.
Для алюминия и алюминиевых сплавов твердость НВ приблизительно равна 0,3·Rm, где Rm – предел прочности при растяжении, выраженный в МПа [2].
Если применяется индентор из карбида вольфрама, то применяется обозначение HBW.
Твердость Викерса (HV)
Сопротивление проникновению алмазного индентора в виде квадратной пирамиды при стандартизированных условиях. Твердость HV приблизительно равна 1,10·HB [2].
Усталость
Тенденция металла разрушаться при длительных циклическом напряжении, которое значительно ниже предела прочности при растяжении.
Рисунок 7 – Различие в усталостном поведении низкоуглеродистой стали иалюминиевых сплавов [3]
Усталостная прочность
Максимальная амплитуда напряжения, которую может выдерживать изделие при заданном количестве циклов нагружения. Обычно выражается как амплитуда напряжения, которая дает 50%-ную вероятность разрушения после заданного количества циклов нагружения [2].
Усталостная выносливость
Предельное напряжение, ниже которого материал будет выдерживать заданного количество циклов напряжения [2].
ли со статьей или есть что добавить?