Тема 5.1. Баланс мощностей и регулирование частоты в энергосистеме

Тема 5.1. Баланс мощностей и регулирование частоты в энергосистеме

На постоянном токе поток носителей электрозарядов не меняет свое направление во времени, хотя мгновенная его величина может меняться. На переменном токе ток периодически изменяет направленность. Количественная характеристика этого изменения – это частота электрического тока.

Измерение частоты тока осциллографом

Измерение частоты тока осциллографом

Период и амплитуда синусоидального колебанияСигнал на экране осциллографаТрёхфазный переменный ток

Частота тока

Изобретение электричества поставило человечество на новую грань развития. Технический прогресс опирался на два направления движения с использованием электроэнергии. В одном случае применялся постоянный ток, во втором – переменный. Внедрение источников электричества и электропотребителей вылилось в столетнюю войну между приверженцами двух видов энергии. В конце концов, победу одержали те, кто продвигал идею повсеместного использования её переменного вида.

Синусоида переменного электричества в системе координат

Графики зависимости полезной мощности от сопротивления

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R®эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R0, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

Существует ли зависимость напряжения от частоты?

Казалось бы, раскрыть зависимость напряжения от частоты просто. Стоит только обратиться с соответствующим запросом ко всезнающим поисковым системам и. убедиться, что ответа на этот вопрос попросту нет. Что же предпринять? Давайте разбираться вместе в этом непростом вопросе.

«Исследование зависимости емкостного и индуктивного сопротивления от частоты переменного тока». методическая разработка по физике (11 класс) по теме

Под емкостным сопротивлением понимается особый характер противодействия переменному току, наблюдаемый в цепях с электрической ёмкостью. При этом емкостное сопротивление конденсатора зависит не только от включённых в цепь элементов, но и от параметров протекающего в ней тока (смотрите рисунок ниже).

Зависимость ёмкостного сопротивления от частоты

Зависимость ёмкостного сопротивления от частоты

Отметим также, что конденсатор относится к категории реактивных элементов, потери энергии на которых в цепи переменного тока не происходит.

Участие электростанций различного типа в покрытии суммарной нагрузки энергосистем

Суммарные графики нагрузки энергосистем неравномерны. Коэффициент заполнения графиков довольно низок – kзап= 0,5…0,7 – и имеет тенденцию к дальнейшему снижению ввиду появления в энергосистемах новых типов потребителей и изменения структуры энергопотребления.

Распределение нагрузки между отдельными электростанциями с целью покрытия суммарного графика нагрузки энергосистемы производят, исходя из особенностей технологического режима электростанций различного типа, с тем, чтобы получить в целом по системе положительный хозяйственный эффект. При этом в базовую часть графика нагрузки в непаводковый период помещают АЭС, ТЭЦ, частично КЭС, ГЭС без водохранилищ, а также частично ГЭС с водохранилищами. В полупиковую часть графика помещают КЭС, а в пиковую часть – ГЭС. Во время паводка мощность ГЭС в базовой части графика нагрузки увеличивается, с тем, чтобы после заполнения водохранилищ не сбрасывать бесполезно избыток воды через водосливные плотины. При этом большая доля мощности КЭС и частично мощности ТЭЦ вытесняется в полупиковую часть графика нагрузки.

Зная графики нагрузки электростанций, можно планировать ремонт оборудования. Агрегаты ГЭС, как правило, ремонтируют зимой, а ТЭС и АЭС – весной и летом. Изменения нагрузки и установленной мощности электростанции в системе в течение года взаимосвязаны.

В энергосистеме должны быть предусмотрены резервы: эксплуатационный (ремонтный, режимный, аварийный), составляющий примерно 10…12 % установленной мощности энергосистемы, и хозяйственный, составляющий около 3 %. Считается, что для нормального функционирования энергосистемы ее общий резерв должен составлять 13…15 % установленной мощности. На практике разность между установленной мощностью электростанций и их фактической нагрузкой в каждый данный момент не есть резервная мощность энергосистемы в обычном понимании.

С учетом устойчивости и надежности работы энергосистемы мощность наиболее крупного агрегата, как показывает опыт эксплуатации, нормально не должна превышать 1,5…3 % установленной мощности энергосистемы. Следовательно, крупные агрегаты мощностью 500, 800 и 1200 МВт могут устанавливаться только в относительно мощных энергосистемах.

Общее понятие о переменном токе

В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.

Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.

Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент.

Сигнал на экране осциллографа

Что такое частота тока

Частота тока может относиться только к переменному показателю, который периодически изменяет своё направление и (или) силу в соответствии с синусоидальной функцией. Для того, чтобы вычислить период переменного тока, необходимо определить минимальный промежуток времени, через который повторяются изменение напряжения и силы. Частотой называется количество периодов, которое совершает ток за указанный промежуток или за единицу времени. Стандартное измерение выполняется в герцах (Гц), один период в 1 секунду равен одному Герцу.

Работа тока

Формула емкостного сопротивления

Для того чтобы определиться с ёмкостным сопротивлением в той или иной схеме, потребуется выявить следующие параметры:

  • Частота протекающего в цепочке переменного тока;
  • Номинальное значение ёмкости конденсатора;
  • Наличие в цепи других радиотехнических элементов.

После того, как учтены все перечисленные выше факторы, можно будет определить ёмкостное сопротивление конденсатора по следующей формуле:

Эта формула указывает на обратно пропорциональную зависимость сопротивления от величины ёмкости и частоты питающего напряжения.

Благодаря такому характеру его изменения, конденсаторы могут работать в следующих частотно-зависимых схемах:

  • Интегральные и дифференциальные устройства;
  • Резонансные цепочки различного класса;
  • Специальные фильтрующие элементы.

Добавим к этому возможность использования конденсаторов в качестве демпферных элементов в цепи переменного тока, нагруженной на мощные (силовые) агрегаты.

Закон Ома для участка схемы с ёмкостью

Определение частоты и периода

Колебания потока зарядов происходят циклически, по синусоидальному закону. Протяженность одного такого цикла, выраженная в секундах, – это период переменного тока (Т).

Частота тока определятся количеством колебательных циклов за 1 секунду. Другими словами, это скорость, с которой ток меняет направление. Буквенный символ, обозначающий частоту, – f.

Взаимосвязь частоты и периода, выраженная математически, определяется формулой:

Справедлива и обратная зависимость:

Период переменного тока

Период переменного тока

При расчетах частота переменного тока измеряется в герцах (Гц). Если током совершается 1 колебательный цикл в секунду, то f = 1 Гц.

Важно! Пятьдесят колебательных циклов за 1 секунду соответствуют 50 Гц. Это промышленная частота электрического тока в России.

Иногда в расчетах применяется угловая частота:

единица измерения этого показателя – рад/с.

1 радиан = 360°/2π.

Некоторые общие частотные диапазоны:

  • 50-60 Гц – частота тока в энергосистеме (60 Гц применяется, например, в США);
  • 1-20 кГц (килогерц) – частотно-регулируемые приводы;
  • 16 Гц -20 кГц – аудиочастоты (диапазон человеческого слуха);
  • 3 кГц-3000 ГГц (гигагерц) – радиочастоты.

Какие токи бывают

Для питания электрических устройств и электротехники необходима энергия. Постоянный и переменный токи являются способом передачи энергии из одной точки в другую с использованием проводников.

Важно! Основное различие между ними заключается в характере движения заряженных частиц. Постоянный ток течет равномерно в одном направлении, в то время, как переменный постоянно изменяет направление с заданной скоростью или частотой. Основным следствием этого является полярность напряжения.

Постоянный

Постоянный ток характеризуется неизменным показателем полярности заряженных частиц. Поскольку постоянный ток сохраняет постоянную полярность, важно обращать внимание на то, как подключается устройством – неверное подключение устройства к сети с большой долей вероятности выедет его из строя. Хорошим примером являются устройства с автономным питанием от аккумуляторов – на них всегда наносятся обозначения для их корректного подключения. В противном случае, техника просто не заработает, так как не получит электропитания.

Важно! При использовании постоянного тока, показатель напряжения может сильно разниться, в зависимости от используемого устройства. Типовые значения номинального напряжения автономных источников питания составляют 1.5V, 3.7V, 6V, 9V,12V, 24V и т.д.

Изменение направления тока

Переменный

С переменным током полярность постоянно переключается между положительным и отрицательным значениями. При подобной характеристике силового поля напряжение будет постоянно меняться, а полярность в таком случае не оказывает никакого влияния на работоспособность сети. Именно поэтому, любое бытовое электрическое устройство можно включать в сеть, не задумываясь о положении вилки в розетке, то есть, о соблюдении корректной полярности.

Основной причиной широкого распространения переменного тока является относительная легкость и эффективность в увеличении, либо уменьшении напряжения. Это достигается с помощью трансформаторов, а количество изменений количественных показателей определяется числом обмоток.

Важно! Такая же трансформация допускается и для постоянной величины, но это явление не является эффективным для его применения на практике. Также, это является еще одной, дополнительной причиной, по которой в бытовой сети используется именно переменный ток.

Фазы в батарейке

Несмотря на то, что более низкие напряжения легче генерировать, высокие показатели несут меньшие потери при их передаче на расстояния. Поэтому перед подачей потребителям переменное напряжение повышается до нескольких сотен киловольт. Но, как только электричество достигает своего пункта назначения, оно снижается до 110 или 220 вольт. Дело в том, что переменный показатель имеет два установленных стандартных напряжения, которые используются во всем мире: 220В и 110В. Частота в электротехнике играет определяющее значение, и устройства, рассчитанные под напряжение в 110В, не станут работать от сети в 220В.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R<< r). Зависимость к.п.д. от силы тока в цепи с учётом формул (8), (9), (10) примет вид

Таким образом, к.п.д. достигает наибольшего значения h =1 в случае разомкнутой цепи ( I = 0), а затем уменьшается по линейному закону, обращаясь в нуль при коротком замыкании.

Зависимость мощностей Р1, Рполн = EI и к.п.д. источника тока от силы тока в цепи показаны на рис.1.

Из графиков видно, что получить одновременно полезную мощность и к.п.д. невозможно. Когда мощность, выделяемая на внешнем участке цепи Р1, достигает наибольшего значения, к.п.д. в этот момент равен 50%.

Переменный синусоидальный ток

Это тот ток, который периодически меняется во времени, и его изменения подчиняются закону синусоиды. Это элементарное движение электрических зарядов, потому дальнейшему разложению на простые токи оно не подлежит.

Вид формулы такого переменного тока:

где:

  • Im – амплитуда;
  • sinωt – фаза синусоидального тока, рад.

Здесь ω = const, называется угловой частотой переменного электричества, причём угол ωt находится в прямой временной зависимости.

Зная частоту f исходного тока, можно вычислить его угловую частоту, применив выражение:

Тут 2πэто выраженное в радианах значение центрального угла окружности:

  • Т = 2 π радиан = 3600;
  • Т/2 = π = 1800;
  • Т/4 = π/2 = 900.

Если выразить 1 рад в градусах, то он будет равен 57°17′.

Синусоидальное переменное движение электронов

С чего бы напряжению падать?

Да просто потому, что не может не падать. Итак. Если на одном полюсе источника потенциал равен 220 Вольт, а на другом – ноль, то это падение могло произойти только в цепи. Закон Ома говорит о том, что, если в сети имеется одно сопротивление, то все напряжение на нем и упадет. Если два и больше – каждое падение будет пропорционально его величине, а их сумма равна исходной разности потенциалов.

Ну и что? Где здесь указание на зависимость напряжения от частоты тока? Пока что все зависит от величины сопротивления. Вот, если бы найти такой резистор, который меняет свои параметры при изменении частоты! Тогда и падение напряжения на нем менялось бы автоматически.

Векторное представление ёмкости

Для получения более чёткого представления о том, что такое ёмкостное сопротивление, можно воспользоваться векторным представлением протекающих в конденсаторе процессов.

Векторное представление

Векторное представление

После изучения диаграммы можно заметить, что ток в цепи конденсатора меняет фазу с опережением напряжения на 90 градусов. Из характера взаимодействия основных электрических величин делается вывод о том, что конденсатор оказывает сопротивление изменению напряжения на нём.

Чем больше ёмкость, тем медленнее происходит её перезарядка до полного напряжения (и тем меньше ёмкостное сопротивление данного элемента). Этот вывод полностью совпадает с приведённой ранее формулой.

Дополнительная информация. При исследовании включенных в цепи переменного тока индуктивностей обнаруживается обратная закономерность, когда ток, наоборот, отстаёт по фазе от изменений напряжения.

Отметим, что в обоих случаях наблюдаемые различия в фазных параметрах указывают на реактивный характер сопротивления этих элементов.

Взаимосвязь частоты и работы электрооборудования

Схемы и электрооборудование предназначены для работы с фиксированной или переменной частотой.

Для электротехники, нормально функционирующей при фиксированной частоте, изменение этого показателя вызовет нарушения в работе. Например, электродвигатель на 50 Гц будет работать медленнее при частотном значении ниже 50 Гц и быстрее, если частотный показатель выше 50 Гц.

Важно! Между частотой и скоростью электродвигателя существует пропорциональная зависимость. Однопроцентное отклонение частоты приведет к такому же изменению скорости двигателя.

Как вычислить частоту и период тока

Формула, используемая для расчета периода одного цикла:

T – период времени 1 цикла.

Для того, чтобы вычислить частоту, необходимо применять обратную формулу, исходя из обратно пропорциональной зависимости: f = 1 / T.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ

Статья 34 - Картинка 16

Соберите на экране цепь, показанную на рис. 2. Для этого сначала щелкните левой кнопкой мыши над кнопкой э.д.с. в нижней части экрана. Переместите маркер мыши на рабочую часть экрана, где расположены точки. Щелкните левой кнопкой мыши в рабочей части экрана, где будет расположен источник э.д.с.

Разместите далее последовательно с источником резистор, изображающий его внутреннее сопротивление (нажав предварительно кнопку в нижней части экрана) и амперметр (кнопка там же). Затем расположите аналогичным образом резисторы нагрузки и вольтметр , измеряющий напряжение на нагрузке.

Подключите соединительные провода. Для этого нажмите кнопку провода внизу экрана, после чего переместите маркер мыши в рабочую зону схемы. Щелкайте левой кнопкой мыши в местах рабочей зоны экрана, где должны находиться соединительные провода.

4. Установите значения параметров для каждого элемента. Для этого щелкните левой кнопкой мыши на кнопке со стрелкой . Затем щелкните на данном элементе. Подведите маркер мыши к движку появившегося регулятора, нажмите на левую кнопку мыши и, удерживая ее в нажатом состоянии, меняйте величину параметра и установите числовое значение, обозначенное в таблице 1 для вашего варианта.

Таблица 1. Исходные параметры электрической цепи

5. Установите сопротивление внешней цепи 2 Ом, нажмите кнопку «Счёт» и запишите показания электроизмерительных приборов в соответствующие строки таблицы 2.

6. Последовательно увеличивайте с помощью движка регулятора сопротивление внешней цепи на 0,5 Ом от 2 Ом до 20 Ом и, нажимая кнопку «Счёт», записывайте показания электроизмерительных приборов в таблицу 2.

7. Вычислите по формулам (2), (7), (8), (9) Р1, Р2, Рполн и h для каждой пары показаний вольтметра и амперметра и запишите рассчитанные значения в табл.2.

8. Постройте на одном листе миллиметровой бумаге графики зависимости P1 = f(R), P2 = f(R), Pполн=f(R), h = f (R) и U = f(R).

9. Рассчитайте погрешности измерений и сделайте выводы по результатам проведённых опытов.

Таблица 2. Результаты измерений и расчётов

R, Ом 2,0 2,5 3,0 20
U, В
I, А
P1, Вт
P2, ВТ
Pполн, ВТ
h

Есть такие резисторы

Их еще называют реактивными, в отличие от активных собратьев. На что же они реагируют, изменяя свою величину? На частоту! Существует 2 вида реактивных сопротивлений:

  • индуктивное;
  • емкостное.

Каждый вид связан со своим полем. Индуктивное – с магнитным, емкостное – с электрическим. На практике они представлены в первую очередь, соленоидами.

Катушки индуктивности

Они представлены на фото выше. И конденсаторами (ниже).

Емкостное сопротивление конденсатор

Их можно считать антиподами, потому что реакция на изменение частоты прямопротивоположная. Индуктивное сопротивление растет с частотой. Емкостное, наоборот, падает.

Теперь, учитывая особенности реактивных сопротивлений, в соответствии с законом Ома, можно утверждать, что зависимость напряжения от частоты переменного тока существует. Она может быть рассчитана с учетом величин реактивных сопротивлений в цепи. Только для ясности надо помнить, что речь идет именно о падении напряжения на элементе цепи.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Действующее значение синусоидального тока

Под действующим значением понимают его эффективность. Она равна такому значению постоянного тока, который выполнит ту же работу, что и переменный, за один период времени. Под работой здесь подразумевают его тепловую или электродинамическую направленность. Удобнее всего использовать среднеквадратичное значение переменного электричества.

Тогда действующее значение для синусоидального тока определяют по формуле:

I = * Im ≈ 0,707* Im,

где Im – величина амплитуды тока.

 Действующее значение тока

Вторичное регулирование частоты (АВРЧМ)

Вторичное регулирование частоты — процесс восстановления планового баланса мощности путём использования вторичной регулирующей мощности для компенсации возникшего небаланса, ликвидации перегрузки транзитных связей, восстановления частоты и использованных при первичном регулировании резервов первичной регулирующей мощности. Вторичное регулирование осуществляется автоматически под воздействием центрального регулятора.

Вторичное регулирование начинается после действия первичного и предназначено для восстановления номинальной частоты и плановых перетоков мощности между энергосистемами в энергообъединении.

В основном во вторичном регулировании участвуют гидроэлектростанции (ГЭС) в связи с их маневренностью. Все крупные ГЭС России подключены к системе АВРЧМ для участия во вторичном регулировании и получают в режиме реального времени (характерный цикл информационного обмена — 1 сек) задание вторичной мощности, которое через групповой регулятор активной мощности (ГРАМ) поступает непосредственно на исполнение системами управления гидроагрегатами.

В период паводка для наиболее экономичного срабатывания паводковой воды в гидротурбинах к АВРЧМ привлекаются и электростанции других типов (ТЭС, ПГУ). Участие ТЭС, ПГУ в АВРЧМ осуществляется в рамках работы рынка системных услуг.

Как формируется переменный ток

Трехфазное производство очень распространено в мире. Простейшим способом является использование трех отдельных катушек в статоре генератора, физически смещенных друг относительно друга на угол в 120 ° (одна треть полной фазы 360 °). Создаются три основных формы волны тока, которые равны по величине и смещены по фазе. Если катушки добавляются напротив (с шагом 60 °), они генерируют одинаковые фазы с обратной полярностью, поэтому могут быть просто соединены вместе.

На практике обычно используются более высокие «порядки полюсов». Например, 12-полюсный станок будет иметь 36 катушек (с шагом 10 °). Преимущество состоит в том, что более низкие скорости вращения могут быть использованы для генерации одинаковой частоты. Например, 2-полюсная машина, работающая на скорости 3600 об / мин, и 12-полюсная машина, работающая на 600 об/мин, производят одинаковую частоту; низкая скорость предпочтительнее для больших машин, так как предотвращается износ основных деталей механизмов.

Формирование тока

Важно! Если нагрузка в трехфазной системе равномерно распределена между фазами, то через нейтральную точку ток не протекает. Даже при несбалансированной (линейной) нагрузке в худшем случае ток нейтрали не будет превышать максимальный из фазных токов.

Нелинейные нагрузки (например, широко распространённые импульсные источники питания) могут потребовать слишком большой шины на нейтрали и проводнике в распределительной панели выше по потоку для обработки гармоник. Гармоники могут привести к тому, что уровни тока в нейтральном проводнике превысят уровни одного или всех фазных проводников.

Приведённая в статье базовая информация поможет понять логику работы и формирования электрического тока, основные закономерности и связи различных качественных показателей. Заинтересовавшись данной темой, читатель может углубиться в изучение процессов и получить полезные знания, которые могут пригодиться для применения их на практике.

И все-таки она существует!

Вопросительный знак в заголовке статьи превратился в восклицательный. “Яндекс” реабилитирован. Осталось только привести формулы зависимости напряжения от частоты для разных видов реактивных сопротивлений.

Емкостное: XC = 1/(w · C). Здесь w — угловая частота, C — емкость конденсатора.

Индуктивное: XL = w · L, где w — то же, что и в предыдущей формуле, L — индуктивность.

Как видно, частота влияет на величину сопротивления, изменяя его, следовательно, изменяет и падение напряжения. Если в сети имеется активное сопротивление R, емкостное XC и индуктивное XL, то сумма падений напряжений на каждом элементе будет равна разности потенциалов источника: U = Ur + Uxc+ Uxl.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения.

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует.

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.

Схема для расчёта ёмкостного сопротивления

Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Частотомер

Частотные изменения позволяет регистрировать частотомер. Такие приборы конструируются с использованием нескольких способов измерения:

  1. Дискретный счет. Применяется в цифровых приборах. Основан на вычислении количества сигналов за временную единицу;
  2. Перезаряд конденсаторов. Усредненный показатель силы тока, при которой перезаряжается конденсатор, соразмерен частоте. Ток фиксируется амперметром, а шкала устройства представлена в герцах;
  3. Сравнение частот. Прибором для использования этого способа часто является осциллограф, где происходит сравнение частотного значения с эталонным образцом;
  4. Вибрационные частотомеры. Содержат тонкие пластины из металла, закрепленные с одной стороны, которые начинают колебаться под воздействием электромагнитного поля, создаваемого в приборе. Пластина, частота колебаний которой резонирует с частотой колебаний электромагнитного поля, покажет искомое значение. Приборы применяются для замеров частотного показателя в питающей сети.

Генерирование переменного тока

Кроме стандартных генераторов, для производства переменного тока применяются инверторы и фазорасщепители.

Инвертор

Это устройство, с помощью которого из постоянного тока получают его переменный вид. В процессе этого величина выходного напряжения тоже меняется. Схема устройства представляет собой электронный генератор синусоидального импульсного напряжения периодического характера. Есть варианты инверторов, работающих с дискретным сигналом. Инверторы применяют для автономного питания оборудования от аккумуляторов постоянного напряжения.

Инвертор 12/220 В, мощностью 1500 Вт

Фазорасщепитель

Ещё один способ получить несколько фаз из какого-либо сигнала – это выполнить его расщепление на несколько фаз. Это делается с помощью фазорасщепителя. Принудительная обработка сигналов цифрового или аналогового формата используется, как в радиоэлектронике, так и в силовой электротехнике.

Для электроснабжения трёхфазных асинхронных двигателей применяют выполненный на их же базе фазорасщепитель. Для этого обмотки трёхфазного двигателя соединяют не «звездой», а иначе. Две катушки присоединяют между собой последовательно, третью – подключают к средней точке второй обмотки. Двигатель запускают, как однофазный, после разгона в его третьей обмотке наводится ЭДС.

Интересно. В случае расщепления фаз подобным методом сдвиг фаз между 2 и 3 обмоткой составляет не 1200, как должно быть в идеале, а 900.

Вопросы и задания для самоконтроля

  1. Запишите закон Джоуля-Ленца в интегральной и дифференциальной формах.
  2. Что такое ток короткого замыкания?
  3. Что такое полная мощность?
  4. Как вычисляется к.п.д. источника тока?
  5. Докажите, что наибольшая полезная мощность выделяется при равенстве внешнего и внутреннего сопротивлений цепи.
  6. Верно ли утверждение, что мощность, выделяемая во внутренней части цепи, постоянна для данного источника?
  7. К зажимам батарейки карманного фонаря присоединили вольтметр, который показал 3,5 В.
  8. Затем вольтметр отсоединили и на его место подключили лампу, на цоколе которой было написано: Р=30 Вт, U=3,5 В. Лампа не горела.
  9. Объясните явление.
  10. При поочерёдном замыкании аккумулятора на сопротивления R1 и R2 в них за одно и то же время выделилось равное количество тепла. Определите внутреннее сопротивление аккумулятора.

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные. правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Акционерным обществом «Системный оператор Единой энергетической системы» (АО «СО ЕЭС»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 июня 2021 г. Ne 100-П)

За принятие проголосовали:

по МК (ИСО 3166) 004-97

4 Приказом Федерального агентства по техническому регулированию и метрологии от 3 августа 2021 г. № 801 -ст межгосударственный стандарт ГОСТ 34184—2017 введен в действие в качестве национального стандарта с 1 марта 2021 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а текст изменении и поправок — в ежемесячном информационном указателе кНациональные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен. тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Для чего необходимо знать мощность двигателя

Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая — мощность. Зная главные данные, вы сможете:

  • Подобрать подходящие по номиналам тепловое реле и автомат.
  • Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
  • Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.

Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты — это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.

Свойства емкостей

При параллельном включении нескольких конденсаторов их ёмкости складываются между собой. При этом общее ёмкостное сопротивление (согласно рассмотренным выше формулам) уменьшается. Если же все конденсаторные элементы соединены в последовательную цепочку, их суммарная ёмкость вычисляется как обратные значения каждой из составляющей.

Ёмкостное сопротивление последовательно включенных элементов в этом случае, наоборот, увеличивается. В заключение отметим, что такой характер изменения ёмкости и импеданса объясняется свойствами конденсатора, способного накапливать заряд на своих обкладках.

Нормируемые требования к показателям

В РФ требования к качеству работы энергосистемы стандартизированы.

В соответствии с ГОСТ 13109-97 частота в энергосистеме должна непрерывно поддерживаться на уровне f = 50 ± 0,2 Гц, при этом допускается кратковременное отклонение частоты до значения ∆f = 0,4 Гц.

Анализируя зависимость силы тока от частоты, можно сделать вывод, что если подключаемая нагрузка имеет чисто активный характер (к примеру, резистор), то в широком диапазоне сила тока от частоты иметь зависимость не будет. В случае достаточно высоких частот, когда индуктивность и ёмкость подключаемой нагрузки будут характеризоваться сопротивлением, сравнимым с активным, то сила тока будет иметь определенную зависимость от частоты.

Другими словами, при варьировании частоты тока происходит изменение ёмкостного сопротивления, изменение которого, в свою очередь, приводит к изменению тока, протекающего по цепи.

То есть при повышении частоты, снижается ёмкостное сопротивление, и повышается ток, протекающий по цепи.

Математическое выражение зависимости будет иметь следующий вид: I = UCω;

Применение на практике

Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:

  • Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
  • Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.

Ещё одна область применения — отделение переменной составляющей от постоянной. Например, в оконечных каскадах усилителей звуковой частоты. Чем выше ёмкость, тем более низкую частоту способен воспроизвести подключённый громкоговоритель.

В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию. Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод. Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.

Благодаря своим свойствам конденсаторы используются в тех случаях, когда необходимо передать и постоянный, и переменный ток по одним и тем же проводам. Источник постоянного напряжения подключается к общему проводу и второму выводу ёмкости, через которую присоединяется источник переменного напряжения. На другой стороне происходит разделение: потребитель переменного подключается через конденсатор той же ёмкости, а потребитель постоянного — напрямую, до выводов детали.

Напряжение или разность потенциалов?

Надо заметить, что напряжение и разность потенциалов — это одно и то же. По сути, это сила, которая способна заставить электрические заряды двигаться потоком. Не имеет значения, куда будет направлено это движение.

Разность потенциалов — просто другое выражение для напряжения. Оно нагляднее и, может быть, понятнее, но сути дела не меняет. Поэтому главный вопрос состоит в том, откуда берется напряжение, и от чего оно зависит.

В том, что касается домашней сети 220 Вольт, ответ простой. На гидростанции поток воды вращает ротор генератора. Энергия вращения трансформируется в силу напряжения. Атомная электростанция вначале превращает воду в пар. Он и крутит турбину. В бензоэлектростанции ротор вращает сила сгорающего бензина. Есть и другие источники, но суть всегда одна и та же: энергия превращается в напряжение.

Схема генератора переменного тока

Самое время задаться вопросом о зависимости напряжения от частоты. Но мы еще не знаем, откуда берется частота.

Токи высокой частоты

ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.

Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.

Плюсы использования ТВЧ в разных случаях:

  • быстрый нагрев при ковке и прокате металла;
  • оптимальный температурный режим для пайки или сварки деталей;
  • расплав даже очень тугоплавких сплавов;
  • приготовление пищи в микроволновых печах;
  • дарсонвализация в медицине.

Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.

Период пульсаций и частота

Частота переменного тока может иметь другое название – пульсация. Периодом пульсации называют время единичной пульсации.

Интенсивность циклов

Для электросети с частотой 50 Гц период пульсации составит:

При необходимости, зная эту зависимость, можно по времени цикла вычислить частоту.

Опасность разночастотных зарядов

Как постоянный, так и переменный ток при определённых значениях представляет опасность для человека. До 500 В разница в безопасности находится в соотношении 1:3 (42 В постоянного к 120 В переменного).

При значениях выше 500 В это соотношение выравнивается, причём константное электричество вызывает ожоги и электролизацию кожных покровов, изменяющееся – судороги, фибрилляцию и смерть. Тут уже частота пульсации имеет большое значение. Самый опасный интервал частот – от 40 до 60 Гц. Далее с повышением частоты риск поражения уменьшается.

Влияние частоты на пороговый ток

Частота переменного электричества – важный параметр. Она влияет не только на работу электроустановок потребителей, но и на человеческий организм. Изменяя частоту электрических колебаний, можно менять технологические процессы на производстве и качество вырабатываемой энергии.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий