Теплопроводность стали, алюминия, латуни, меди

Теплопроводность стали, алюминия, латуни, меди

Теплопроводность металлов

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

Что нагреется быстрее сталь или алюминий для

Лучше всех других металлов проводят тепло серебро и золото, затем идут медь, алюминий, вольфрам, магний, цинк и другие. Самые плохие металлические проводники тепла — свинец и ртуть.

Металлы с наибольшей теплопроводностью

У каждого металла есть ряд параметров, характеризующие его как материал. Их нужно учитывать при изготовления различных предметов, заготовок, повышения эксплуатационных характеристик. Один из главных параметров — теплопроводность металлов. Этот показатель учитывают производители при изготовлении термодатчиков, радиаторов, холодильных установок.

Фото 433

Металлообрабатывающий завод

Теплопроводность металлов и сплавов — объясняем по полочкам

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Что лучше проводит тепло дерево или металл?

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.

Определение и значение

Теплопроводность — способность материалов переносить энергию тепла от разогретых поверхностей к холодным участкам. Теплопроводящими могут быть жидкости, газы, твердые вещества. Это способность тела проводить тепловую энергию через себя, передавать ее другим предметам.

Коэффициент теплопроводности — величина, равняющаяся количеству теплоты, которая переносится через определенную площадь поверхности за 1 секунду.

Впервые этот параметр был установлен в 1863 году. Ученые доказали, что передача теплоты осуществляется за счет движения свободных электронов. В металлических заготовках их больше, чем в предметах из другим материалов.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

Влияние концентрации углерода на теплопроводность стали

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

От чего зависит показатель теплопроводности

Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:

Как узнать о теплопроводности

  1. Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
  2. Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.

В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.

Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

 Значение коэффициента теплопроводности стали

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Какие факторы влияют на показатель?

Чтобы понять, как повысить или понизить показатель разных видов металла, нужно знать какие факторы влияют на этот параметр:

  • размеры изделия, площадь поверхности;
  • форму заготовки;
  • химический состав;
  • пористость материала;
  • вид материала;
  • изменение температуры воздействия.

Также внимание нужно уделить строению кристаллической решетки.

Металлические листы (Фото: Instagram / metall61_armatura_dostavka)

Когда учитывается

При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:

Тип теплопроводности

  1. Когда нужно отвести тепло от объекта. Тепловая энергия может возникать из-за трения. При этом нагрев становится причиной изменения основных свойств металлов и сплавов: прочности и твердости поверхности. Примером назовем конструкцию двигателя внутреннего сгорания. В процессе хода поршня в блоке цилиндров происходит нагрев основных элементов конструкции. Из-за слишком высокого нагрева даже металлы, устойчивые к воздействию высокой температуры, начинают терять прочность и становятся более пластичными. В результате происходит изменение геометрических размеров важных элементов конструкции, и она выходит из строя. Учитывается теплопроводность и при создании режущего инструмента, обшивки самолетов или высокоскоростных поездов.
  2. Когда нужно передать тепловую энергию. Центральная система отопления основана на нагреве рабочей среды, которая после подводится к потребителю и происходит передача энергии окружающей среде. Для того чтобы повысить эффективность создаваемой системы трубы, и отопительные радиаторы изготавливаются из металлов, которые способны быстро передавать тепло.
  3. Когда нужно изолировать поверхность. Встречается ситуация, когда нужно снизить вероятность нагрева поверхности. Для этого применяются специальные материалы, которые обладают высокими изоляционными качествами. Некоторые металлы и сплавы также обладают отражающими свойствами и не нагреваются, а также не передают тепло. Примером назовем фольгу, которая часто применяется в качестве отражающего экрана. Она также изготавливается из тонкого слоя металла, обладающего низким коэффициентом проводимости.

Как узнать о теплопроводности

В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.

Почему Металлы хорошо проводят электрический ток и тепло?

Металлы хорошо проводят электрический ток и теплоту из-за наличия в кристаллических решётках подвижных электронов. Они(электроны) на внешних слоях слабо связаны с ядром, имеют возможность свободно передвигаться по всему объёму металла.

Теплопроводность материалов

Коэффициент теплопередачи для ребристой стенки

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Снижаем затраты

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Определение площади теплопередачи

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Что хуже всего проводит тепло?

Лучшие проводники тепла — металлы (особенно серебро, медь). Хуже всего проводят тепло теплоизоляторы — воздух, войлок, древесина. Плохая теплопроводность воздуха используется в наших домах — слой воздуха между двойными стеклами окон является прекрасным теплоизолятором.

Какие показатели считаются нормой?

Коэффициент учитывается в различных сферах производства. Этот параметр нужно учитывать при изготовлении:

  • утюгов;
  • нагревательных приборов;
  • холодильных камер;
  • подшипников скольжения;
  • оборудования для нагревания воды;
  • отопительных приборов.

Изучая свойства различных материалов, специалисты составили таблицы с показателями теплопроводности для каждого из них. Их можно найти в специализированных справочниках.

Для стали

Справочники объединяют в себе расчетные данные для разных материалов:

  • стали, которая используется при изготовлении режущего инструмента;
  • сплавов для производства пружин;
  • стали, насыщенной легирующими добавками;
  • сплавов, стойких в образованию ржавчины;
  • материалов, устойчивых к высокой температуре.

Данные в таблицы собирались для стали, которая подвергалась термической обработке при температуре от -263°C до +1200°C.

Термообработка (Фото: Instagram / energomashvologda)

Для меди, никеля, алюминия и их сплавов

Показатель для металлов и сплавов будет отличаться для цветных и черных металлов. У железа и цветных металлов разная структура, температура плавления, строение кристаллической решетки.

В таблицах можно найти информацию о химическом составе меди, никеля, алюминия. Особенности:

  • самая высокая теплопроводность у никеля, магния, меди и сплавов на их основе.
  • самая низкая теплопроводность у инвара, нихрома, алюминия, олова.

Какие предметы лучше всего проводят тепло?

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.

Геохимия и минералогия

Среднее содержание хрома в различных изверженных породах резко непостоянно. В ультраосновных породах (перидотитах) оно достигает 2 кг/т, в основных породах (базальтах и др.) — 200 г/т, а в гранитах десятки г/т. Кларк хрома в земной коре 83 г/т. Он является типичным литофильным элементом и почти весь заключен в минералах типа хромшпинелидов. Хром вместе с железом, титаном, никелем, ванадием и марганцем составляют одно геохимическое семейство.

Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы, и их неточно называют «хромиты». Состав их изменчив:

  • Cr2O3 18—62 %,
  • FeO 1—18 %,
  • MgO 5—16 %,
  • Al2O3 0,2 — 0,4 (до 33 %),
  • Fe2O3 2 — 30 %,
  • примеси TiO2 до 2 %,
  • V2O5 до 0,2 %,
  • ZnO до 5 %,
  • MnO до 1 %; присутствуют также Co, Ni и др.

Собственно, хромит, то есть FeCr2O4 сравнительно редок. Помимо различных хромитов, хром входит в состав ряда других минералов — хромовой слюды (фуксита), хромового хлорита, хромвезувиана, хромдиопсида, хромтурмалина, хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может накапливаться в глинах. Наиболее подвижной формой являются хроматы.

Почему алюминий быстро нагревается?

У алюминия достаточно большая теплопроводность, именно поэтому сам металл быстро нагревается (пример: алюминиевая ложка в горячем супе). Но при этом высокая удельная теплоемкость (920, а у стали, для сравнения, 460). То есть нужно больше тепла, чтобы на опр.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

радиатор отопления и алюминия

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Методы изучения и измерения

Прежде чем начинать изучение и измерение показателя теплопроводности нужно выбрать материал, узнать технологию его какой технологии получения. Например, металлические заготовки одинакового размера, формы, изготовленные литьем или порошковой металлургии будут отличаться основными параметрами. То же самое касается сырых металлов в сравнении с тем, которые прошли термическую обработку.

Чтобы получить точные данные, нужно выбирать заготовки прошедшие одинаковые этапы обработки. Они должны быть одного размера, формы, похожи по химическому составу.

Специалисты выделяют ряд актуальных методик измерения коэффициента теплопроводности, применяемыми предприятиями:

  1. TCT (Методика разогретой проволоки).
  2. HFM (Методика теплового потока).
  3. GHP (Технология раскаленной охранной зоны).
  4. Релакционно-динамический способ. С его помощью проводятся массовые измерения технических характеристик. При измерении нужно выбирать заготовки с одинаковой отражающей способностью поверхностей.

При изготовлении различных предметов, деталей, оборудования из металла, специалисты учитывают отдельные технические характеристики. Например, при производстве теплообменников, радиаторов, систем охлаждения, нагрева воды, главный параметр — коэффициент теплопроводности. На него влияет химическое строение материала, кристаллическая решетка, пористость, форма, размеры заготовки.

Конвекция

— это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.
Пример явления конвекции
: небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом. Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух. В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.Различают два вида конвекции:

  • естественная (или свободная)

Читать также: Ручная аргонно дуговая сварка

Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.

  • вынужденная

Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д. Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.
Конвекция в твердых телах происходить не может.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий